
Revision 0.91

2023-09-25

SINGLE FREQUENCY LASER DFB Laser

General Product Information	
Product	Application
795 nm DFB Laser	Spectroscopy (Rb D1 line)
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with integrated μ-Isolator and Beam Collimation	

Absolute Maximum Ratings Parameter Symbol Unit min typ max Storage Temperature ° C T_S -40 85 Operational Temperature at Case T_C ° C -40 85 Operational Temperature at Chip ° C 5 50 T_{chip} Forward Current 170 I_{F} mΑ Reverse Voltage ٧ 2 $V_{\text{R}} \\$ $\mathsf{P}_{\mathsf{opt}}$ Output Power mW 45 TEC Current Α 1.1 I_{TEC} TEC Voltage V_{TEC} V 2.8

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum
Ratings may damage the laser. Please note that a
damaging optical power level may occur although
the maximum current is not reached. These are
stress ratings only, and functional operation at
these or any other conditions beyond those
indicated under Recommended Operational
Conditions is not implied.

Recommended Operational Conditions					
Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	° C	-20		60
Operational Temperature at Chip	T_{chip}	° C	10		45
Forward Current	I _F	mA			160
Output Power	Popt	mW	10		40

Measurement Conditions / Comments
measured by integrated Thermistor

ol Unit	min 794	typ 795	max 796
	794	795	796
nm			, , , ,
nm		794.98	
MHz		0.6	1
pm	25		
dB	30	45	
Γ nm/K		0.06	
l nm/m∧	4	0.003	
7	R dB T nm/K	R dB 30 T nm/K	R dB 30 45 T nm/K 0.06

Measurement Conditions / Comments
Tchip = 10 ° 45° C at Popt = 40 mW
FWHM, Popt = 80 mW
> 10 GHz, at target wavelength
Popt = 40 mW

Revision 0.91

2023-09-25

SINGLE FREQUENCY LASER DFB Laser

Characteristics	Tchip = 25° at BOL	=			
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Temperature Range	T _{chip}	° C	0		0
Laser Current	I_{LD}	mA			160
Slope Efficiency	η	mW/mA		0.4	
Threshold Current	I _{th}	mA			70
Divergence parallel	$\Theta_{ }$	0		0.1	
Divergence perpendicular	Θ_{\perp}	0		0.1	
Beam Diameter horizontal	d	mm		1	1.2
Beam Diameter vertical	d⊥	mm		0.8	1.2
Degree of Polarization	DOP	%		99	

Measurement Conditions / Comments
Popt = 40 mW
parallel to the base plate of the housing
perpendicular to base plate of the housing
parallel to the base plate of the housing
perpendicular to base plate of the housing
Popt = 40 mW; slant polarization (45°)

Parameter Symbol Unit min typ max Monitor Detector Responsivity I_{mon}/P_{ot} μ A/mW 1 20	Monitor Diode				
Monitor Detector Responsivity I _{mon} / P _{or} µA/mW 1 20	Parameter	Symbol Unit	min	typ	max
	Monitor Detector Responsivity	I _{mon} / P _{or} μA/mW	1		20

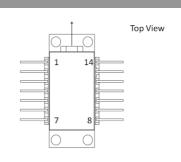
Measurement Conditions / Comments	
5 V	

Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		1.3	
Power Dissipation (total loss at case)	P _{loss}	W		0.4	
Temperature Difference	ΔΤ	Κ			50

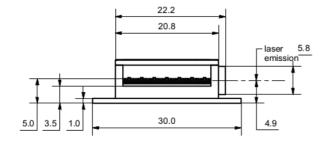
Measurement Conditions / Comments
Popt = 40 mW, ΔT = 20 K
Popt = 40 mW, ΔT = 20 K
Popt = 40 mW, ΔT = 20 K
Popt = 40 mW, ΔT = Tcase - TLD

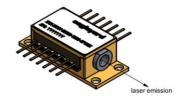
Thermistor (Standard NTC Type)						
Parameter	Symbol	Unit	min	typ	max	
Resistance	R	kΩ		10		
Beta Coefficient	β		3892			
Steinhart & Hart Coefficient A	А		1.	.1293 x 10	-3	
Steinhart & Hart Coefficient B	В		2.3410 x 10 ⁻⁴			
Steinhart & Hart Coefficient C	С		8.	7755 x 10	-8	
	_					

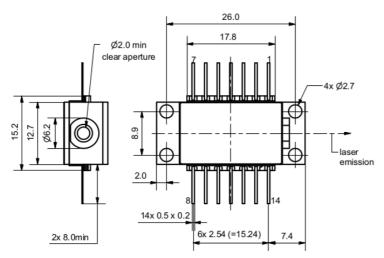
Measurement Conditions / Comments	
Tchip = 25° C	
$R_1/R_2 = e^{\beta}(1/T_1 - 1/T_2)$ at Tchip = 0° 50° C	
$1/T = A + B(\ln R) + C(\ln R)^3$	
T: Temperature in Kelvin	
R: resistance at T in Ω	


Revision 0.91

2023-09-25


SINGLE FREQUENCY LASER DFB Laser




Pin Assignment	
1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 Case
3 Photo Diode Anode	12 not connected
4 Photo Diode Cathode	11 Laser Diode Cathode
5 Thermistor	10 Laser Diode Anode
6 not connected	9 not connected
7 not connected	8 not connected

Package Drawings

AIZ-20-1029-0928

Revision 0.91

2023-09-25

SINGLE FREQUENCY LASER **DFB** Laser

Unpacking, Installation and Laser Safety

sinks will contribute to a long lifetime of the diode.

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat

DIRECT OR SCATTERED RADIATIO CLASS 4 LASER PRODUCT WAVELENGTH 795 nm

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye. Each laser diode will come with an individual test protocol verifying the parameters given in this document

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.