

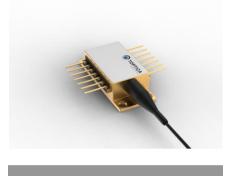
SINGLE FREQUENCY LASER DFB Laser

General Product Information

Product	Application
852 nm DFB Laser	Spectroscopy
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with PM Fiber and angle-polished Connector (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	Tc	°C	-40		85
Operational Temperature at Chip	T_{chip}	°C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			55
TEC Current	I_{TEC}	А			1,4
TEC Voltage	V_{TEC}	V			3,2


Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Chip	T_{chip}	°C		25	
Forward Current	I _F				180

Characteristics

Tchip = 25° at BOL

max
853

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor

Measurement Conditions / Comments

Popt = 50 mW

SINGLE FREQUENCY LASER DFB Laser

Characteristics	Tchip = 25° at BOL			
Parameter	Symbol Unit	min	typ	max
Laser Current	I _{LD} mA			180
Slope Efficiency	η mW/mA		0,5	
Threshold Current	I _{th} mA			70
Polarization Extinction Ratio	PER dB		20	

Monitor Diode

Parameter	Symbol Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{or} µA/mW	1		20

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0,4	
Voltage	U_{TEC}	V		0,8	
Power Dissipation (total loss at case)	Ploss	W		0,5	
Temperature Difference	ΔT	К			50

Measurement Conditions / Comments Popt =50 mW, Δ T = 20 K Popt = 50 mW, Δ T = 20 K Popt = 50 mW, Δ T = 20 K Popt = 50 mW, Δ T = |Tcase - Tchip|

Measurement Conditions / Comments

Measurement Conditions / Comments

Popt = 50 mW

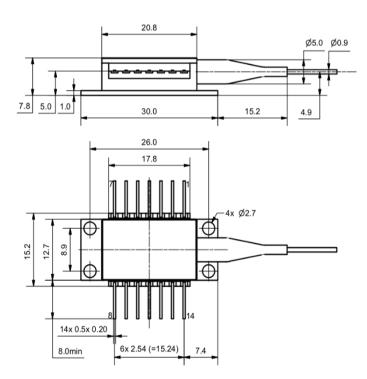
5 V reverse voltage

Thermistor (Standard NTC Type)

Symbol	Unit	min	typ	max
R	kΩ		10	
β			3892	
А		1.	1293 x 10 ⁻	3
В		2.	3410 x 10⁻	4
С		8.	7755 x 10 ⁻	8
	R β A B	R kΩ β Α Β	R kΩ β 1. B 2.	R kΩ 10 β 3892 A 1.1293 x 10 ⁻¹ B 2.3410 x 10 ⁻¹

Measurement Conditions / Comments Tchip = 25° C $R_1/R_2 = e^{\beta}(1/T_1 - 1/T_2)$ at Tchip = 0° ... 50° C

2024-04-11


SINGLE FREQUENCY LASER DFB Laser

Pin Assignment

1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 Case
3 Photo Diode Anode	12 not connected
4 Photo Diode Cathode	11 Laser Diode Cathode
5 Thermistor	10 Laser Diode Anode
6 not connected	9 not connected
7 not connected	8 not connected

Package Drawings

AIZ-16-0222-1415

© eagleyard Photonics GmbH Rudower Chaussee 29 (IGZ) This data sheet is subject to change without notice.

D-12489 Berlin GERMANY fon 49.30.6392.4520 fax 49.30.6392.4529 www.toptica-eagleyard.com info@toptica-eagleyard.com

2024-04-11

Top View

14

2024-04-11

SINGLE FREQUENCY LASER DFB Laser

Fiber and Connector Type (Output)

Parameter PM Fiber 900 / 125 / 5.5 µm, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m) Connector FC/APC (narrow key / 2mm)

Measurement Conditions / Comments

SINGLE FREQUENCY LASER DFB Laser

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

A laser diode is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

IEC-60825-1

