EYP-DFB-0895-00050-1500-TOV01-0005

Revision 0.91

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

General Product Information

Product	Application
895 nm DFB Laser	Spectroscopy (Cs D1 line)
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	

Absolute Maximum Ratings

Symbol	Unit	min	typ	max
Ts	°C	-40		85
Tc	°C	-20		75
T _{LD}	°C	0		50
l _F	mA			140
V _R	V			2
P _{opt}	mW			60
I _{TEC}	А			1.0
V _{TEC}	V			1.0
	T _s T _c T _{LD} I _F V _R V _R I _{TEC}	$\begin{array}{c c} T_{S} & \circ C \\ T_{C} & \circ C \\ T_{LD} & \circ C \\ I_{F} & mA \\ V_{R} & V \\ P_{opt} & mW \\ I_{TEC} & A \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	0		55
Operational Temperature at Laser Chip	T _{LD}	°C	15		45
Forward Current	I _F	mA			120
Output Power	Popt	mW	20		50

Characteristics at T_{LD} = 25° C at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{c}	nm	893		896
Target Wavelength	λ_{T}	nm		894.59	
Linewidth (FWHM)	Δλ	MHz		2	
Sidemode Supression Ratio	SMSR	dB	30	45	
Temperature Coefficient of Wavelength	d λ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	

Rudower Chaussee 29

12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum

Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor

Measurement Conditions / Comments

ee images on page 4 eached within $T_{LD} = 15^{\circ} \dots 45^{\circ} C$ at 50 mW $_{opt} = 50 \text{ mW}$
_{opt} = 50 mW
- F0 m//
_{opt} = 50 mW

ΤΟΡΤΙCΑ

eagleyard Photonics GmbH

EYP-DFB-0895-00050-1500-TOV01-0005

Revision 0.91

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

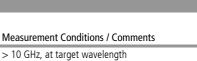
Characteristics at T_{LD} = 25° C	Cat BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm	25		
Laser Current @ $P_{opt} = 50 \text{ mW}$	I _{LD}	mA			120
Slope Efficiency	η	W / A	0.6	0.8	1.1
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	

> 10 GHz, at target wavelength е

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW		t.b.d.	

Thermoelectric Cooler


Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.4	
Power Dissipation (total loss at case)	Ploss	W		0.4	
Temperature Difference	ΔΤ	К			40

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3930	
Steinhart & Hart Coefficient A	А			1.029 x 10	-3
Steinhart & Hart Coefficient B	В			2.510 x 10	-4
Steinhart & Hart Coefficient C	C			1.051 x 10	-7

Measurement Conditions / Comments
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = Tcase - TLD $

Γ _{LD} = 25° C	
$R_{1}/R_{2}=e^{\beta(1/T_{1}\cdot1/T_{2})}$ at $T_{LD}=$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^{3}$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

parallel to	Pin 1 - Pin 6 plane (see p. 3)	
perpendic	ular to Pin 1 - Pin 6 plane (see p. 3)	
$P_{opt}=\ 50$	mW; E field perpendicular to Pin 1 - 6 plar	۱e

eagleyard Photonics GmbH Rudower Chaussee 29 www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

12489 Berlin GERMANY

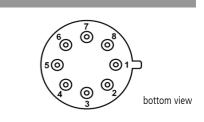
This data sheet is subject to change without notice. © eagleyard Photonics

2022-09-01

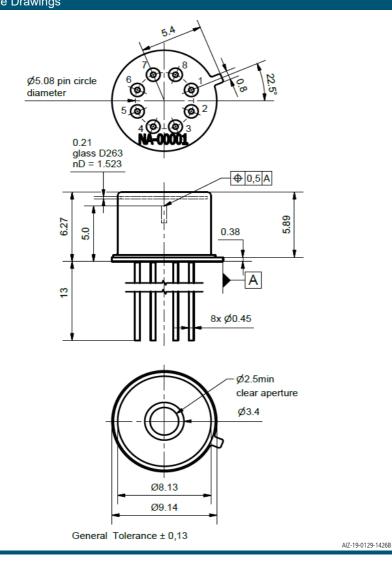
Measurement Conditions / Comments				

EYP-DFB-0895-00050-1500-TOV01-0005

Revision 0.91



2022-09-01


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment

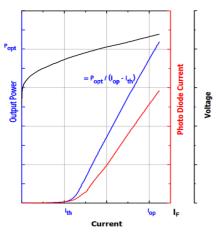
1	Laser Diode Anode	5	Thermistor	
2	Laser Diode Cathode	6	Thermistor	
3	Thermoelectric Cooler (-)	7	Photo Diode Anode	
4	Thermoelectric Cooler (+)	8	Photo Diode Cathode	
All 8 pins are isolated from case.				

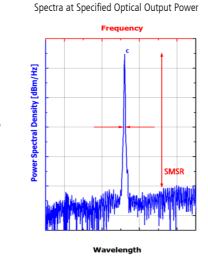
Package Drawings

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

12489 Berlin GERMANYThis data sheet is subject to change without notice.fon +49.30.6392 4520© eagleyard Photonics

EYP-DFB-0895-00050-1500-TOV01-0005 Revision 0.91



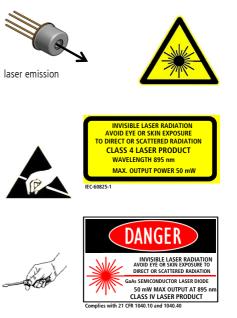

2022-09-01

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY Thi www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520