Ordering Information:

optix

Email orders to: sales@xsoptix.com Fax orders to: 800-878-7282

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Revision 0.50

SINGLE FREQUENCY LASER DIODES mini ECDL Laser

General Product Information

Product	Application
895 nm mini-ECDL Laser	Spectroscopy (Cs D1 line)
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Quantum Technology
with integrated Beam Collimation	

Absolute Maximum Ratings

	Unit	min	typ	max
Ts	°C	-40		85
T _C	°C	-40		85
T _{LD}	°C	-5		55
I _F	mA			200
V _R	V			2
P _{opt}	mW			100
ITEC	А			1.1
V_{TEC}	V			2.8
	T _C T _{LD} I _F V _R P _{opt} I _{TEC}	$\begin{array}{c c} T_{C} & \circ C \\ \hline T_{LD} & \circ C \\ \hline I_{F} & mA \\ \hline V_{R} & V \\ \hline P_{opt} & mW \\ \hline I_{TEC} & A \end{array}$	$\begin{array}{c c} T_{C} & \circ C & -40 \\ \hline T_{LD} & \circ C & -5 \\ \hline I_{F} & mA \\ \hline V_{R} & V \\ \hline P_{opt} & mW \\ \hline I_{TEC} & A \end{array}$	$T_{C} \sim C -40$ $T_{LD} \sim C -5$ $I_{F} \sim MA$ $V_{R} \sim V$ $P_{opt} \sim MW$ $I_{TEC} \sim A$

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	0		50
Forward Current	I _F	mA			180
Output Power	P _{opt}	mW	20		80

Characteristics at T_{LD} = 25° C at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	893	894	895
Target Wavelength	λ_{T}	nm		894.59	
Linewidth (FWHM)	Δλ	kHz		100	300
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm		15	
Sidemode Supression Ratio	SMSR	dB	30	40	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.008	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.001	

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

Measurement Conditions / Comments

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

measured by integrated Thermistor

Measurement Conditions / Comments

reached within T _{LD} = $0 \circ \dots 50^{\circ} C$
A linewidth below 100kHz was measured in the time scale of 1 ms
By current tuning, at target wavelength
$P_{opt} = 80 \text{ mW}$

This data sheet is subject to change without notice. © eagleyard Photonics

Revision 0.50

SINGLE FREQUENCY LASER DIODES mini ECDL Laser

Characteristics at T	_{LD} = 25°	C at BOL				cont'd
Parameter		Symbol	Unit	min	typ	max
Laser Current @ P _{opt} =	80 mW	I _{LD}	mA			180
Slope Efficiency		η	W / A	0.6	0.8	1
Threshold Current		I _{th}	mA			70
Divergence parallel	(1/e ²)	$\Theta_{ }$	mrad		2	
Divergence perpendicular	(1/e ²)	Θ_{\perp}	mrad		2	
Beam Diameter horizontal	(1/e ²)	d	mm		1.0	1.2
Beam Diameter vertical	(1/e ²)	d_\perp	mm		0.8	1.2
Degree of Polarization		DOP	%		90	

Measurement Conditions / Comments

Threshold current may drift, no violation of the max. Value parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) $P_{opt} = 80$ mW; E field parallel to the base plate

Monitor Diode

-					
Parameter	Symbol	Unit	mın	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	10		400

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		1.3	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	С			8.7755 x 10	-8

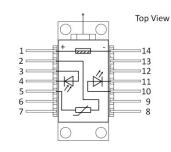
Measurement Conditions / Comments $U_R = 5 V$

Measurement Conditions / Comments
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = Tcase - TLD $

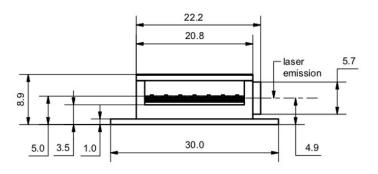
$T_{LD} = 25^{\circ} C$	
$R_{1}/R_{2}=e^{-\beta(1/T_{1}-1/T_{2})}$ at $T_{LD}=$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^3$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

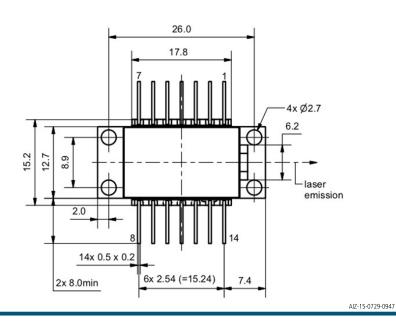
eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520 This data sheet is subject to change without notice. © eagleyard Photonics

2022-11-07

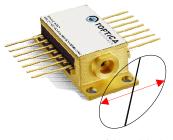

Revision 0.50

2022-11-07


SINGLE FREQUENCY LASER DIODES mini ECDL Laser

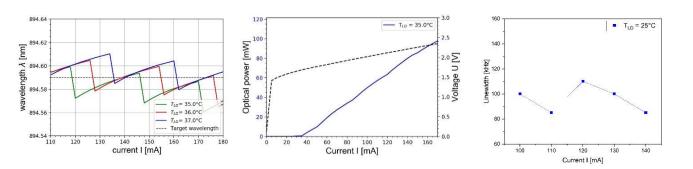

Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected


Package Drawings

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics



E field parallel to base plate

Revision 0.50

SINGLE FREQUENCY LASER DIODES mini ECDL Laser

Typical Measurement Results

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

21 CFR 1040.10 and 1040.4

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY T www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics

