

GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation

PRELIMINARY SPECIFICATION

RWE Laser

EYP-RWE-0980-08020-1500-SOT02-0000

General Product Information				
Product	Application			
tunable 980 nm Fabry-Perot Laser	Spectroscopy			
for use in an External Cavity Diode Laser (ECDL)				
sealed SOT Housing				
Monitor Diode				

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T _s	°C	-20		85
Operational Temperature at Case	T _C	°C	-20		50
Forward Current	I _F	mA			120
Reverse Voltage	V_R	V			0

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device. Operation at the Absolute Maximum Rating for extended periods of time can adversely affect the device realibility and may lead to reduced operational life.

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operational Temperature at case	T _C	°C	15		40
Forward Current	I _F	mA			100

Tuning range and output power are estimated from the gain profile of the laser. The actual achieved wavelength and power are strongly influenced by the external cavity. Therefore eagleyard Photonics will give no guarantee on these parameters.

Polarization parallel to Pin 2 - Pin 3 -plane

Characteristics at T _{amb} 25 °C at Begin Of Life					
Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λς	nm		980	
Tuning Range	$\Delta \lambda_{tun}$	nm	900		1000
Output Power (extracavity)	P _{opt}	mW		50	
Cavity Length	L	μm		1500	
Reflectivity at Front Facet	R_{ff}			3·10 ⁻⁴	1.10-3

Polarization

TE

GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation

PRELIMINARY SPECIFICATION

RWE Laser

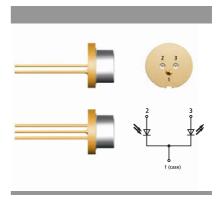
EYP-RWE-0980-08020-1500-SOT02-0000

typ	max
	10
	5

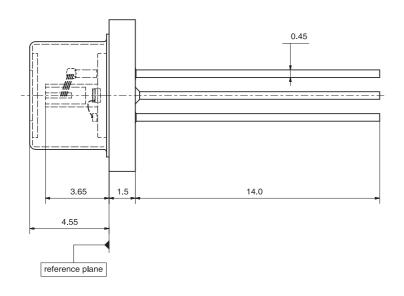
Measurement Conditions / Comments
$U_{R MD} = 5 \text{V}$, $P_{opt ic}$: intracavity power of the ECDL

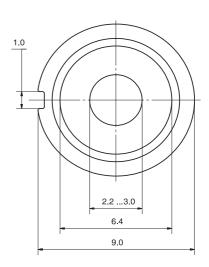
GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation

PRELIMINARY SPECIFICATION


RWE Laser

EYP-RWE-0980-08020-1500-SOT02-0000

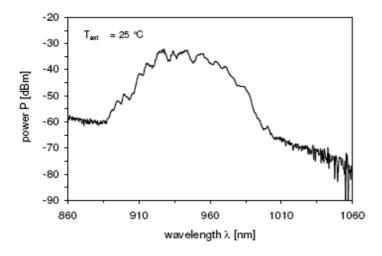

Package Dimensions					
	Symbol	Unit	min	typ	max
Emission Plane	d_{EP}	mm	3.50	3.65	3.70
Housing Diameter	d	mm		9.0	
Pin Length	I	mm		14.0	


reference plane: top side of TO header	

Package Pinout	M-Type	
Ground	1	
Photo Diode (+)	2	
Laser (+)	3	

Package Drawings

GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation


PRELIMINARY SPECIFICATION

RWE Laser

EYP-RWE-0980-08020-1500-SOT02-0000

Typical Measurement Results

Emission Spectrum measured without external feedback

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The RWE diode type is known to be sensitive against thermal stress. It should not be operated without appropriate optical feedback from an external cavity. Operating at moderate temperatures on propper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase thread to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

