

Revision 0.70

Absolute Maximum Ratings

Recommended Operational Conditions

2023-01-23

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser with integrated Amplifier

General Product Information	
Product	Application
1064 nm DBR Laser	Raman Spectroscopy
with monolithically integrated Tapered Amplifier (TA)	Metrology
hermetic 14 Pin Butterfly Housing (RoHS compliant)	Nd:YAG Replacement
' T	EDEA D.

ncluding Thermoelectric Cooler and Thermistor EDFA Pumping	ermetic 14 Pin Butterfly Housing (RoHS compliant)	Nd:YAG Replacement
	cluding Thermoelectric Cooler and Thermistor	EDFA Pumping

٦	0	C	0	0	

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current DBR	I _{DBR}	mA			500
Forward Current TA	I _{TA}	А			7.5
Reverse Voltage DBR	$V_{R\ DBR}$	V			2
Reverse Voltage TA	V_{RTA}	V			2
Output Power	P_{opt}	W			2.5
TEC Current	I _{TEC}	Α			2.5
TEC Voltage	V_{TEC}	V			5.0

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{C}	°C	0		50
Operational Temperature at Laser Chip	T_{LD}	°C	15	25	35
Forward Current DBR	I _{DBR}	mA			450
Forward Current TA	I _{TA}	Α			7.0
Output Power	P _{opt}	W			2.0
	·				

Measurement Conditions / Comments

Characteristics					
Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1063	1064	1065
Spectral Width (FWHM)	Δλ	pm		3	
Sidemode Supression Ratio	SMSR	dB	30		

Measurement Conditions / Comments
see images on page 4
apart from mode-hops (see Spectral Map on page 4)
$P_{opt} = 2 W$

Revision 0.70

2023-01-23

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser with integrated Amplifier

				cont'd
Symbol	Unit	min	typ	max
dλ/dT	nm / K		0.08	
$d\lambda/dI_{DBR}$	nm / mA		0.001	
$d\lambda$ / dI_{TA}	nm / A		0.035	
I _{TA}	Α			7.0
η	W/A		0.8	
I _{th TA}	А		3	
$\Theta_{ }$	mrad		2	
Θ_{\perp}	mrad		2	
d	mm		1	
d_{\bot}	mm		1	
DOP	%		90	
	$\begin{array}{c} d\lambda / dT \\ d\lambda / dI_{DBR} \\ d\lambda / dI_{TA} \\ I_{TA} \\ \eta \\ I_{th TA} \\ \Theta \\ \Theta_{\perp} \\ d \\ d_{\perp} \end{array}$	$\begin{array}{ccc} d\lambda / dT & nm / K \\ d\lambda / dI_{DBR} & nm / mA \\ d\lambda / dI_{TA} & nm / A \\ & & & & \\ I_{TA} & A \\ & & & & \\ I_{th TA} & A \\ & & & & \\ \Theta_{ } & mrad \\ & & & & \\ \Theta_{\perp} & mm \\ & & & \\ d_{ } & mm \\ & & & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Laser	Forward Current DBR
Laser	Forward Current TA
Ampli	fier
parall	el to the base plate of the housing (see p. 3)
perpe	ndicular to base plate of the housing (see p.
parall	el to the base plate of the housing (see p. 3)
perpe	ndicular to base plate of the housing (see p.
P _{ont} =	2 W; E field parallel to the base plate

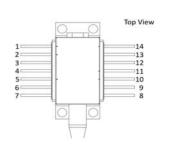
Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А			2.5
Voltage	U_TEC	V			5.0
Power Dissipation (total loss at case)	P _{loss}	W		10	
Temperature Difference	ΔΤ	K			25

Measurement Conditions / Comments
$P_{opt} = 2 \text{ W, } \Delta T = 20 \text{ K}$
$P_{opt} = 2 \text{ W, } \Delta T = 20 \text{ K}$
$P_{opt} = 2 W$, $\Delta T = 20 K$
$P_{opt} = 2 \text{ W, } \Delta T = Tcase - TLD $

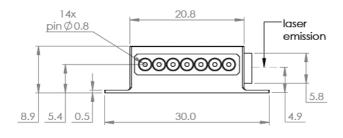
Thermistor (Standard NTC Type	oe)				
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C			8.7755 x 10	-8

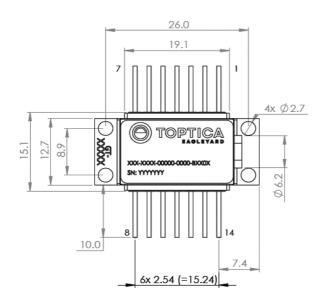
Measurement Conditions / Comments				
$T_{LD} = 25^{\circ} C$				
$R_1 / R_2 = e^{\;\beta (1/T_1 \cdot 1/T_2)} \;$ at $T_{LD} =$	0° 50° C			
$1/T = A + B(\ln R) + C(\ln R)^3$				
T: temperature in Kelvin				
R: resistance at T in Ohm				

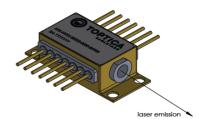
Revision 0.70


2023-01-23

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser with integrated Amplifier




Pin A	\ ccic	nnm	ont
	าออเร	ji ii ii	CIIL


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor +	13	not connected
3	not connected	12	Amplifier Cathode
4	(Thermistor +)	11	Amplifier Cathode
5	Thermistor -	10	Amplifier Anode
6	DBR Laser Cathode	9	Amplifier Anode
7	DBR Laser Anode	8	not connected

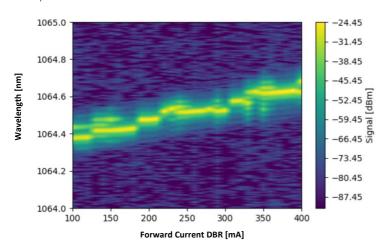
Package Drawings

Caution. Excessive mechanical stress on the package can lead to a damage of the laser.

See <u>instruction manual</u> on www.eagleyard.com

SWZ-23-0116-1755

Revision 0.70

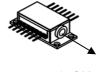

2023-01-23

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser with integrated Amplifier

Typical Measurement Results

Spectral Map

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TBR laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

