

DATA SHEET

SV5C-DPTXCPTX

MIPI D-PHY / C-PHY Generator

C SERIES

© Introspect Technology, 2023 Published in Canada on November 16, 2023 EN-D017E-E-23320

INTROSPECT.CA

TABLE OF CONTENTS

Table of Contents

Introduction	3
Overview	3
Key Benefits	3
Applications	3
Physical Connections	4
MXP High Speed Connector Pinout	4
Low Speed GPIO Connector Pinout	5
Ordering Information	5
Specifications	6

Introduction

OVERVIEW

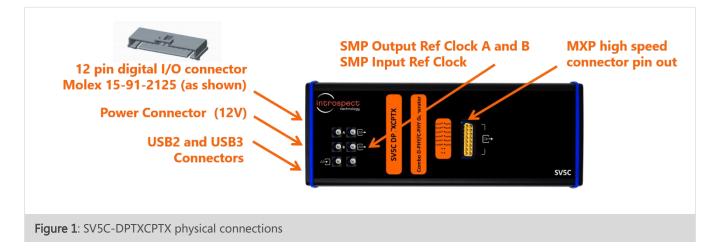
The SV5C-DPTXCPTX MIPI D-PHY/C-PHY Generator is an ultra-portable, high-performance instrument that enables characterization and validation of MIPI D-PHY and C-PHY receiver ports. The instrument operates over a continuous range of data rates and includes analog parameter controls that enable deep insights into receiver voltage sensitivity, receiver skew and jitter tolerance for receiver stress-testing.

The instrument operates with the easy-to-use, highly versatile Pinetree software environment for automated physical layer compliance testing. Pinetree also includes pattern synthesis tools that enable the generation of complete DSI-2 or CSI-2 packets such as color bars and active image frames for system-level test.

This document describes the electrical characteristics and key specifications of the D-PHY and C-PHY Generator. Please refer to User Manual documentation for operating instructions.

KEY BENEFITS

- Any-rate operation to 9.0 Gbps per lane (D-PHY) and 6.5 Gsps per trio (C-PHY)
- Per-lane HS voltage level and common-mode control
- Per-lane LP voltage level control
- Per-lane skew injection with < 1 ps resolution
- Per-lane multi-source jitter injection
- State-of-the-art programming environment based on the highly intuitive Python language


APPLICATIONS

- Parallel physical layer validation
- DSI and CSI packet and protocol testing
- Plug-and-play system-level validation

INTRODUCTION

PHYSICAL CONNECTIONS

MXP HIGH SPEED CONNECTOR PINOUT

MXP PIN **D-PHY PINOUT C-PHY PINOUT** Trio 1 A Lane 1 P 1 MXP 2 Lane 1 N Trio 1 B Top View 3 Lane 2 P Trio 1 C 4 Lane 2 N Trio 3 A 5 Lane 3 P Trio 3 B 9 1 Lane 3N Trio 3 C 6 2 \cap 10 7 NC NC 3 11 NC 8 NC 12 4 () ()9 Lane 4 P Trio 2 A 5 $\cap \cap$ 13 10 Lane 4 N Trio 2 B 6 14 \bigcirc ()NC 11 Trio 2 C 12 NC Trio 4 A 7 $\bigcirc \bigcirc$ 15 13 CLK P Trio 4 B 8 16 14 CLK N Trio 4 C 15 NC NC 16 NC NC

TABLE 1: SIGNAL MAPPING OF THE MXP CONNECTOR FOR SV5C-DPTXCPTX

LOW SPEED GPIO CONNECTOR PINOUT

TABLE 2: GPIO CONNECTOR PINOUT

CONNECTOR	PIN	FUNCTION
	1	User IO 0
	2	User IO 1
	3	Reserved
12-pin GPIO connector	4	Reserved
Molex 15-91-2125	5	Reserved
	6	User IO 2
000000000000000000000000000000000000000	7	User IO 3
	8	SV5C reset pin, active low
T T		("0" = reset, "1" = not in reset)
Pin 12 Pin 1		Minimum pulse width = 50 ns
All User IO pins use	9	I2C SCL Controller
1.8V LVCMOS logic and have a		Software controlled
weak internal pull-up.	10	I2C SDA Controller
(specifications in Table 11).		Software controlled
	11	Tearing effect input
		Rising edge triggered
	12	Ground

ORDERING INFORMATION

TABLE 3: ITEM NUMBERS FOR THE SV5C-DPTXCPTX AND RELATED PRODUCTS

PART NUMBER	NAME	KEY DIFFERENTIATORS
5786	SV5C-DPTXCPTX	Supports both D-PHY and C-PHY
5782	SV5C-DPTX	D-PHY only
5783	SV5C-CPRX	C-PHY only
5793	SV5C TX PHY Upgrade	License to add the C-PHY functionality

Specifications

TABLE 4: GENERAL SPECIFICATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Application / Protocol Support			
Physical layer interface	D-PHY C-PHY		
MIPI protocol	CSI/DSI		Flexible pattern architecture allows for the generation of encoded PHY data, unencoded PHY data, or entire CSI/DSI frames
LP/HS Handling	Automatic		Automatically generates LP and HS data
Ports			
Number of D-PHY Lanes	4 Lanes and CLK		Supports embedded clock for MIPI D-PHY v3.5
Number of C-PHY Trios	4 Trios		
Number of Dedicated Output Reference Clocks	2		Individually synthesized frequency and output format
Number of Dedicated Input Reference Clocks	1		Used as external reference clock input
Number of Trigger Inputs	2		Via Molex connector
Number of Flag Outputs	2		Via Molex connector
Number of I2C/I3C Masters	1		Via Molex connector
Connections to PC for accessing Pinetree	2		USB2 and USB3
Power Consumption			
DC Input Voltage	12	Volt	
Current Draw	8.0	Amp	9.0 Gbps / 4 Lane D-PHY operation
Current Draw	8.0	Amp	6.5 Gsps / 4 Trio C-PHY operation PRBS9 pattern, HS amplitude = 200 mV

TABLE 5: DATA RATES AND REFERENCE CLOCKS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Data Rates and Frequencies			
Minimum Dragrammakla Data Data	100	Mbps	D-PHY
Minimum Programmable Data Rate	80	Msps	C-PHY
Mavimum Programmable Data Data	9.0	Gbps	D-PHY
Maximum Programmable Data Rate	6.5	Gsps	C-PHY
Frequency Resolution of Programmed	1	kHz	
Data Rate			
Minimum External Input Clock	10	MHz	
Frequency			
Maximum External Input Clock	250	MHz	
Frequency			
Supported External Input Clock I/O			LVDS (typical 400 mVpp input)
Standards			LVPECL (typical 800 mVpp input)
Minimum Output Clock Frequency	10	MHz	
Maximum Output Clock Frequency	250	MHz	
Output Clock Frequency Resolution	1	kHz	
Supported External Output Clock I/O			LVDS, LVPECL, CML, HCSL, and
Standards			LVCMOS

TABLE 6: HS VOLTAGE CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Output Coupling			
Output Differential Impedance	100	Ohm	
Differential Impedance Tolerance	+/- 10	Ohm	
Output Single-Ended Impedance	50	Ohm	
Single-Ended Impedance Tolerance	+/- 5	Ohm	
HS Voltage Performance			
Minimum Output Voltage	20	mV	D-PHY, differential
Amplitude	20	mV	C-PHY, single ended
Maximum Output Voltage	600	mV	D-PHY, differential
Amplitude	400	mV	C-PHY, single ended
Voltage Swing Resolution	20	mV	D-PHY, differential
	20	mV	C-PHY, single ended
Voltage Swing Accuracy	>5% or 10 mV	%, mV	
	-100	mV	D-PHY
Minimum Common Mode Voltage	-400	mV	C-PHY
Mayimum Common Made Valtage	500		D-PHY
Maximum Common Mode Voltage	1000	mV	C-PHY
Common Mode Voltage Resolution	1	mV	D-PHY or C-PHY
Common Made Voltage Accuracy	>5% or	%, mV	
Common Mode Voltage Accuracy	10 mV	70, IIIV	
Rise and Fall Time	50	ps	Typical, 20% to 80%
Swing and Common Mode Setting	Per Lane		D-PHY
swing and common mode setting	Per Trio		C-PHY

TABLE 7: LP VOLTAGE CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
LP Voltage Controls			
Minimum Programmable LP Logic High Level	0	mV	LP voltage control specifications apply to both D-PHY and C-PHY
Maximum Programmable LP Logic High Level	1300	mV	
Minimum Programmable LP Logic Low Level	-100	mV	
Maximum Programmable LP Logic Low Level	600	mV	
Logic Level Control Resolution	1	mV	
Logic Level Accuracy	>2% or 5 mV	%, mV	

TABLE 8: HS JITTER AND NOISE CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Jitter and Noise Performance			
Random Jitter (RMS)	< 1.3	ps rms	D-PHY, differential
			C-PHY, single ended
Random Jitter (RMS)	< 1.7	ps rms	1.0 Gsps, HS-only 444 pattern
	< 1.3	ps rms	6.5 Gsps, HS-only 444 pattern
Minimum Frequency of Injected	0.1	kHz	D-PHY or C-PHY
Deterministic Jitter			
Maximum Frequency of Injected	50	MHz	D-PHY or C-PHY
Deterministic Jitter			
Frequency Resolution of Injected	0.1	kHz	D-PHY or C-PHY
Deterministic Jitter			
Maximum Peak to Peak	2	UI	D-PHY or C-PHY , numerically
Deterministic Jitter			generated, tested to 1000 ps
Magnitude Resolution of Injected	500	fs	D-PHY or C-PHY
Deterministic Jitter			
Accuracy of Injected Deterministic	>10% or	%, ps	D-PHY or C-PHY
Jitter	10 ps		
Common Mode Noise Injection	1	MHz	
Minimum Sinusoidal Frequency			
Common Mode Noise Injection	1	GHz	
Maximum Sinusoidal Frequency			
Common Mode Noise Injection	1000	mV	Measured single ended
Maximum Sinusoidal Amplitude			

TABLE 9: HS CHANNEL SKEW CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Channel Skew Performance			
Coarse Skew Range:			
Minimum Programmable Skew,	-20	UI	D-PHY, Lane to Lane
in Integer UI	-20	UI	C-PHY, Trio to Trio
Coarse Skew Range:			
Maximum Programmable Skew,	+20	UI	D-PHY, Lane to Lane
in Integer UI	+20	UI	C-PHY, Trio to Trio
Coarse Skew Resolution			
1.0 Gbps / 1.0 Gsps	0.125	UI	D-PHY, Lane to Lane
9.0 Gbps / 6.5 Gsps	1.0	UI	C-PHY, Trio to Trio
Fine Skew Range:			
Minimum Programmable Skew	-500	ps	D-PHY, HS Clock to Data
	-500	ps	C-PHY, Wire to Wire
			Testing limit – hardware is capable of
			larger skews
Fine Skew Range:			
Maximum Programmable Skew	+500	ps	D-PHY, HS Clock to Data
	+500	ps	C-PHY, Wire to Wire
			Testing limit – hardware is capable of
			larger skews
Fine Skew Injection Resolution	1	ps	D-PHY or C-PHY

TABLE 10: HS PATTERN HANDLING CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
User-Programmable Pattern Memory			
Minimum Pattern Segment Size	8	Bits	
Maximum Pattern Segment Size	8	GBytes	
Total Memory Space for Transmitters	8	GBytes	
Pattern Sequencer			
Sequence Control	Yes		Loop infinite Loop-on-count (see count below) Play to end
Number of Sequencer Slots per Pattern Generator	16		Each pattern generator can string up to 16 different segments together, each with its own repeat count
Number of Entry Slots	1		Separate from above 16 segments
Number of Exit Slots	1		Separate from above 16 segments
Maximum Repeat Count Per Slot	65536		
Maximum Repeat Count for Outer Loop	65536		Outer loop can encompass any number of slots
Additional Pattern Characteristics			
Escape Mode Command Entry	Yes		Per Lane
Pattern Switching	Yes		Wait to end of segment, or immediate

TABLE 11: GPIO AND 12C VOLTAGE CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Voltage			
Voltage Level	1.8	V	All GPIOs operate at 1.8 V LVCMOS
V _{IL} minimum	-0.3	V	
V _{IL} maximum	0.6	V	
V _{IH} minimum	1.2	V	
V _{IH} maximum	2.1	V	
V _{OL} maximum	0.45	V	
V _{OH} minimum	1.35	V	

REVISION NUMBER	HISTORY	DATE
1.0	Document release	July 27, 2020
1.1	Fixed error in the data rate specification	July 27, 2020
1.2	Updated D-PHY data rate specification	July 14, 2021
1.3	Updated specifications and added description of GPIO pinout and GPIO voltage specifications	April 11, 2022
1.4	Replaced Introspect ESP Software for Pinetree	July 26, 2023
1.5	Added embedded clock in table 4	November 16, 2023

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

© Introspect Technology, 2023 Published in Canada on November 16, 2023 EN-D017E-E-23320

INTROSPECT.CA