

DATA SHEET

SV3C Personalized SerDes

Tester

C SERIES

Table of Contents

Table of Contents	2
ist of Figures	
ist of Tables	3
ntroduction	4
Overview Key Benefits Applications	4 5 5
-eaturese	6
Any-Rate Clocking Standard Error Detector Analysis Per-Lane Clock Recovery and Unique Dual-Path Architecture	8 9 .0
Specifications	2
Ordering Information2	23

List of Figures

Figure 1	SV3C at a glance: more integrated, more productive.	4
Figure 2	Clock system architecture inside the SV3C	7
Figure 3	Sampling of analysis and report windows.	8
Figure 4	Per-lane clock recovery and dual-path architecture	9
Figure 5	Molex 15-91-2125 ribbon cable connector.	10
Figure 6	Samtec SEAC high-performance, high-density cable connector	10
Figure 7	Screen capture of the Pinetree user environment	11

List of Tables

Table 1	Low-speed connector pin counts.	9
Table 2	General Specifications	
Table 3	Transmitter Characteristics	13
Table 4	Receiver Characteristics	
Table 5	Clocking Characteristics	
Table 6	Pattern Handling Characteristics	
Table 7	Instruction Sequence Cache	21
Table 8	DUT Control Capabilities	
Table 9	Item numbers for SV3C related products	23

Introduction

OVERVIEW

The SV3C Personalized SerDes Tester is an ultra-portable, high-performance instrument capable of receiver and transmitter validation at data rates up to 14 Gbps and on up to 32 lanes simultaneously. Like the previous generation SV1C, the SV3C integrates multiple technologies to enable the self-contained test and measurement of SerDes interfaces such as PCI Express Gen 3, MIPI M-PHY, or USB3. This highly integrated tester also includes unique reconfiguration and protocol technologies that allow it to tackle advanced protocols.

Figure 1 shows a comparative illustration of the SV3C and highlights the main advancements it offers over the SV1C. Fitting in one hand and containing 32 independent stimulus generation ports, 32 independent capture and measurement ports and various clocking, synchronization and lane-expansion capabilities, the SV3C has been designed specifically to address the growing need of a parallel, system-oriented test methodology while offering world-class signal-integrity features such as jitter injection and jitter measurement.

Figure 1: SV3C at a glance: more integrated, more productive.

- More high-speed lanes (4x)
- More low-speed ports (~4x)
- Miniature GPIO connector
- More flexible reconfiguration and protocol options
- Identical software and automation experience

KEY BENEFITS

- Highest level of integration at 32 lanes in a handheld form factor
- Fully synthesized integrated jitter injection on all lanes
- Flexible pre-emphasis, equalization, and clock recovery per lane
- Flexible loopback support per lane
- State of the art programming environment based on the highly intuitive Python language
- Single-ended or differential low-speed I/O for digital test vector processing
- Reconfigurable, protocol customization (on request)

APPLICATIONS

Parallel PHY validation of SerDes bus standards such as:

- PCI Express (PCIe)
- MIPI C-PHY

- HDMI
- MIPI D-PHY
- MIPI M-PHY
- XAUI

• CPRI

• JESD204B

• USB

SATA

Interface test of electrical/optical media such as:

- Backplane
- Cable
- CFP MSA, SFP MSA, SFP+ MSA

Plug-and-play system-level validation such as:

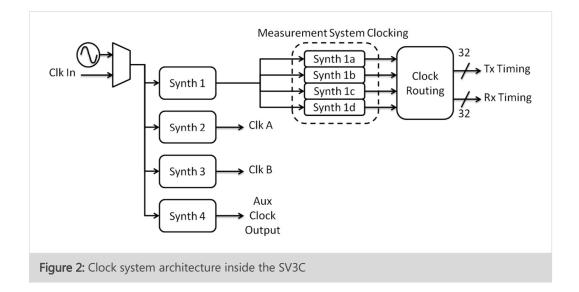
- PCI Express (PCIe) Gen1, Gen2, Gen3
- USB 3.0, 3.0a, 3.0b
- SATA 3.0

Timing verification:

- PLL transfer function measurement
- Clock recovery bandwidth verification
- Frequency ppm offset characterization

Mixed-technology applications:

- High-speed ADC and DAC (JESD204) data capture and/or synthesis
- FPGA-based system development
- Channel and device emulation
- Clock-recovery triggering for external oscilloscope or BERT equipment

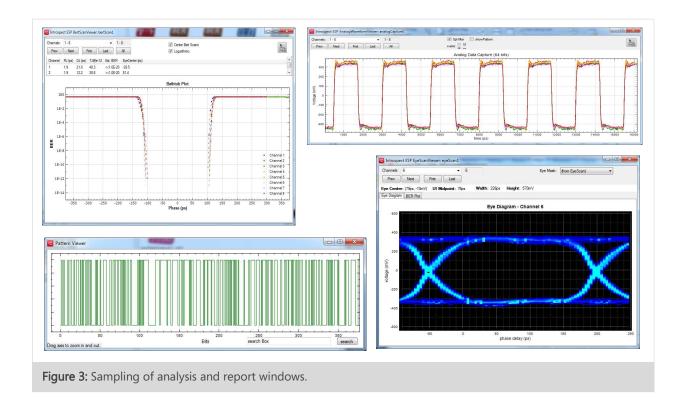

Features

ANY-RATE CLOCKING

The SV3C includes internal frequency synthesizers capable of generating any test data rate. Additionally, the SV3C contains reference clock outputs for driving devices under test or generating synchronization references for other equipment.

Figure 2 shows the global clock architecture of the SV3C. Shown in the figure is a Measurement System Clocking block that drives the large number of lanes available in the tester. For most applications, all lanes are operated at a single data rate. However, the clock system enables multiple lane clocking configurations depending on the various protocol and multi-site requirements.

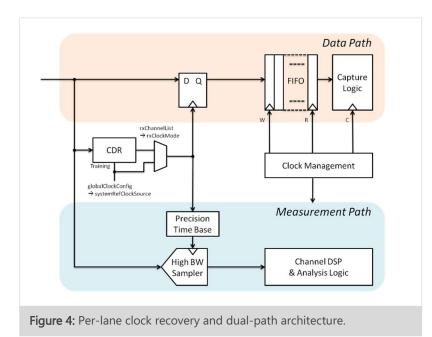
STANDARD ERROR DETECTOR ANALYSIS


The SV3C instrument has an independent Bit Error Rate Tester (BERT) for each of its input channels. Each BERT compares recovered (retimed) data from a single input channel against a specified data pattern and reports the bit error count.

Apart from error counting, the instrument offers a wide range of measurement and analysis features including:

- Jitter separation
- Eye mask testing
- Voltage level, pre-emphasis level, and signal parameter measurement
- Shmoos of various kinds

Figure 3 illustrates a few of the analysis and reporting features of the SV3C. Starting from the top left and moving in a clockwise manner, the figure illustrates bathtub acquisition and analysis, waveform capture, raw data viewing, and eye diagram plotting. As always, these analysis options are executed in parallel on all activated lanes.



PER-LANE CLOCK RECOVERY AND UNIQUE DUAL-PATH ARCHITECTURE

True to the integrated nature of its design, each SV3C receiver has its own embedded analog clock recovery circuit. That is, 32 individual CDR circuits are monolithically integrated in this miniature test system, thus offering the lowest possible sampling latency in a test and measurement instrument.

The monolithic nature of the SV3C clock recovery helps achieve wide tracking bandwidth for measuring signals that possess spread-spectrum clocking or very high amplitude wander. Figure 4 shows a block diagram of the clock recovery capability inside the SV3C Personalized SerDes Tester. Also shown in Figure 4 is the dual-path receiver architecture of the SV3C. This unique architecture allows the SV3C to operate as both a digital capture/analysis instrument and an analog measurement instrument. A feature rich clock management system allows for customization of the SV3C to specific customer requirements.

DIGITAL VECTOR PORTS AND UTILITY POWER SUPPLY

To support test automation and a self-contained bench environment, the SV3C Personalized SerDes Tester includes reconfigurable digital I/O pins for simple device controls or test vector processing. Such processing can include generating simple triggers and flags, controlling device resets and relay matrices, or generating sequenced ATE vector programs. The available I/O pins are customizable on request and can support input, output, single-ended, or differential configurations. Finally, the I/O is exported on two connectors for convenience. A miniature 12-pin ribbon cable connector is provided for rapid prototyping on low-speed signals (Figure 5).

A second high-performance Samtec cable connector is also included for a denser cable interface (Figure 6). Both connectors include a 5V utility supply for powering external adapter boards. Table 1 shows the available number of pins per connector.

TABLE 1 LOW-SPEED CONNECTOR PIN COUNTS

	MOLEX CONNECTOR	SAMTEC CONNECTOR
Number of Pins	11	112

AUTOMATION

The SV3C is operated using Introspect's award-winning software, Pinetree. It features a comprehensive scripting language with an intuitive component-based design as shown in the screen shot in Figure 7. Component-based design is Pinetree's way of organizing the flexibility of the instrument in a manner that allows for easy program development. It highlights to the user only the parameters that are needed for any given task, thus allowing program execution in a matter of minutes.

	DEVICES	Components 0	dataCapture1		<	Procedure	0
⊥ ⊕	V DP		laneList	laneList1		1 globalClockConfig.setup()	
	🚸 DataCapture	🔊 dataCapture1 📋	captureAux	True		<pre>2 dataCapture1.run()</pre>	
9	E LaneList	③ globalClockConfig	transportMode	sst	\sim		
	MainStreamAttributes	mainStreamAttributes1	captureMode	burst			
	RxOptimization GENERAL	Main AreaniAttributes 1	auxCaptureMode	burst	\sim		
	GENERAL Generation Generation Generation		triggerCondition	scramblerReset	\sim		
	BertScan		triggerHoldOffDuration	0			
	() EyeScan		preTriggerDuration	1e+04			
	PatternSync		postTriggerType	numberOfFrames	\sim		
	() GlobalClockConfig		postTriggerDuration	3			
	RefClocksConfig		mainStreamAttributes	mainStreamAttributes1	\sim		
	XX UserEyeMask		linkStartupState	active	\sim		
	UserPattern		triggerTimeout	20			
	UserPatternFromExpr		captureTimeout	20			
	> UTILITY	UTILITY enableHardwareAccel False	False	\checkmark			
			wantAnalysis	True	\checkmark		
			wantCaptureWhenTimeout	False	\sim		
			laneList % LaneList component				
		√ LOG					
G							
9							
-							
1							
		evision: FW000002	Personality: FWSV5EDPRX01	B011 SV5C_4L8G_EDP_ANALYZE		Status: 00000000	Temperature: 38

Specifications

TABLE 2 GENERAL SPECIFICATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Ports			
Number of Differential Transmitters	32		
Number of Differential Receivers	32		
Number of Dedicated Clock Outputs	2		Individually synthesized frequency and output format.
Number of Dedicated Clock Inputs	1		Used as external Reference Clock input.
Number of Trigger Input Pins	Multiple		Consult user manual for included capability. Contact factory for customization.
Number of Flag Output Pins	Multiple		Consult user manual for included capability. Contact factory for customization.
Data Rates and Frequencies			
Minimum Programmable Data Rate	250	Mbps	Contact factory for extension to lower data rates.
Maximum Programmable Data Rate	14	Gbps	
Maximum Data Rate Purchase Options	4	Gbps	
	8.5	Gbps	
	12.5	Gbps	
	14	Gbps	
Data Rate Field Upgrade	4-14	Gbps	Contact factory for details.
Frequency Resolution of Programmed Data Rate	1	kHz	Finer resolution is possible. Contact factory for customization.
Minimum External Input Clock Frequency	25	MHz	
Maximum External Input Clock Frequency	250	MHz	
Supported External Input			LVDS (typical 400 mVpp input)
Clock I/O Standards			LVPECL (typical 800 mVpp input)
Minimum Output Clock Frequency	10	MHz	
Maximum Output Clock Frequency	250	MHz	
Output Clock Frequency Resolution	1	kHz	
Supported External Input Clock I/O Standards			Support for LVDS, LVPECL, CML, HCSL, and CMOS.

TABLE 3 TRANSMITTER CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Output Coupling			
DC common mode voltage	750	mV	typical (different offsets are firmware programmable)
AC Output Differential Impedance	100	Ohm	typical
Voltage Performance			
Minimum Differential Voltage Swing	20	mV	
Maximum Differential Voltage Swing	1000 800	mVpp mVpp	312.5 Mbps to 5 Gbps, 50 ohm AC coupled termination. 5 Gbps to 12.5 Gbps, 50 ohm AC coupled termination.
Differential Voltage Swing Resolution	20	mV	
Accuracy of Differential Voltage Swing	larger of: +/- 10% of programmed value, and +/- 10mV	%, mV	
Rise and Fall Time	50	ps	500 mVpp signal, 20-80%, 50 ohm AC coupled termination.
Pre-emphasis Performance			

Pre-Emphasis Pre-Tap Range	-4 to +4	dB	Both high-pass and low-pass functions are available. This is the smallest achievable range based on worst- case conditions. Typical operating conditions result in wider pre-emphasis range.
Pre-Emphasis Pre-Tap Resolution	Range / 32	dB	
Pre-Emphasis Post1-Tap Range	0 to 6	dB	Only high-pass function is available. This is the smallest achievable range based on worst-case conditions. Typical operating conditions result in wider pre-emphasis range.
Pre-Emphasis Post1-Tap Resolution	Range / 32	dB	
Pre-Emphasis Post2-Tap Range	-4 to +4	dB	Both high-pass and low-pass functions are available. This is the smallest achievable range based on worst- case conditions. Typical operating conditions result in wider pre-emphasis range.
Pre-Emphasis Post2-Tap Resolution	Range / 32	dB	
Jitter Performance			

Random Jitter Noise Floor	1	ps	Based on a single- lane measurement with high- bandwidth scope and with first-order clock recovery.
Minimum Frequency of Injected Deterministic Jitter	0.1	kHz	Contact factory for further customization.
Maximum Frequency of Injected Deterministic Jitter	80	MHz	
Frequency Resolution of Injected Deterministic Jitter	0.1	kHz	Contact factory for further customization.
Maximum Peak-to-Peak Injected Deterministic Jitter	1400	ps	This specification is separate from low- frequency wander generator and SSC generator.
Magnitude Resolution of Injected Deterministic Jitter	500	fs	Jitter injection is based on multi- resolution synthesizer, so this number is an effective resolution. Internal synthesizer resolution is defined in equivalent number of bits.
Injected Deterministic Jitter Setting	Per-bank		Common across all channels within a bank.
Maximum RMS Random Jitter Injection	0.1	UI	
Magnitude Resolution of Injected Jitter	0.1	ps	
Accuracy of Injected Jitter Magnitude	larger of: +/- 10% of programmed	%, ps	

	value, and +/- 10 ps		
Injected Random Jitter Setting	Common		Common across all channels within a bank.
Transmitter-to-Transmitter Skew Performance			
Lane to Lane Integer-UI Minimum Skew	-20	UI	
Lane to Lane Integer-UI Maximum Skew	20	UI	
Effect of Skew Adjustment on Jitter Injection	None		
Lane to Lane Skew	+/- 30	ps	

TABLE 4 RECEIVER CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Input Coupling			
AC Input Differential Impedance	100	Ohm	
AC Performance			
Minimum Detectable Differential Voltage	25	mV	
Maximum Allowable Differential Voltage	2000	mV	
Minimum Programmable Comparator Threshold Voltage	-550	mV	
Maximum Programmable Comparator Threshold Voltage	+550	mV	
Differential Comparator Threshold Voltage Resolution	10	mV	
Differential Comparator Threshold Voltage Accuracy	larger of: +/-10% of program med value, and +/- 10mV	%, mV	

Measured Eye Width Accuracy	10%		Maximum error, 312.5 Mbps – 2.0 Gbps,
	15%		200 mVpp minimum input amplitude
	25%		Maximum error, 2.0 Mbps - 5 Gbps, 200 mVpp minimum input amplitude Maximum error, 5 Gbps – 12.5 Gbps, 200 mVpp minimum input amplitude
Resolution Enhancement			
Equalization			
DC Gain	0	dB	
	2	dB	
	4	dB	
	6	dB	
	8	dB	
CTLE Maximum Gain	16	dB	
CTLE Resolution	1	dB	
DC Gain Control	Per- receiver		
Equalization Control	Per-		
	receiver		
Jitter Performance			
Input Jitter Noise Floor in System Reference Mode	25	ps	Based on a single-lane measurement.
Input Jitter Noise Floor in Extracted Clock	10	ps	Based on a single-lane
Mode			measurement.
Timing Generator Performance			
Resolution at Maximum Data Rate	31.25	mUI	Resolution (as a percentage of UI) improves for lower data rates. Contact factory for details.
	+/- 0.5	LSB	
Differential Non-Linearity Error			

Integral Non-Linearity Error Range	+/- 5	ps	
	Unlimited		
Skew			
Lane to Lane Skew Measurement Accuracy	+/- 10	ps	

TABLE 5 CLOCKING CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Internal Time Base			
Number of Internal Frequency References	5		Standard configuration creates one measurement path frequency reference, two output clock frequency references. Contact factory for clock domain customization.
Embedded Clock Applications			
Transmit Timing Modes	System		
	Extracted		Clock can be extracted from one of the data receiver channels in order to drive all transmitter channels.
Receive Timing Modes	System		
	Extracted		All channels have clock recovery for extracted mode operation.
Lane to Lane Tracking Bandwidth	4	MHz	
Single-Lane CDR Tracking Bandwidth	3 - 12	MHz	
Forwarded Clock Applications			
Transmit Timing Modes	System		
	Forwarded		Contact factory for forwarded clock routing recommendations.
Receive Timing Modes	System		
	Forwarded		Contact factory for forwarded clock routing recommendations.

Clock Tracking Bandwidth	4	MHz	Second order critically damped
			response.
Spread Spectrum Support			
Receive Lanes Track SSC Data	Yes		Requires operation in extracted
			clock mode.
Transmit Lanes Generate SSC Data	Yes		
	0.1	%	
Minimum Spread			
Maximum Spread	2	%	
Spread Programming Resolution	0.01	%	
Minimum Spreading Frequency	31.5	kHz	
Maximum Spreading Frequency	63	kHz	

TABLE 6 PATTERN HANDLING CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Loopback			
Rx to Tx Loopback Capability	Per channel		
Lane to Lane Latency Mismatch	0	UI	
Preset Patterns			
Standard Built-In Patterns	All Zeros		
	D21.5		
	K28.5		
	K28.7		
	DIV.16		
	DIV.20		
	DIV.40		
	DIV.50		
	PRBS.5		
	PRBS.7		
	PRBS.9		

PRBS.11		
PRBS.13		
PRBS.15		
PRBS.21		
PRBS.23		
PRBS.31		
Per-		
Per-		
receiver		
Automatic		Automatically aligns to PRBS
seed		data patterns.
generation		
for PRBS		
4	GByte	Memory allocation is
		customizable. Contact factory.
		Up to memory capacity
	GByte	Memory allocation is
1	CDuta	customizable. Contact factory.
	GByte	Memory allocation is customizable. Contact factory.
		custoffizable. Contact factory.
Loop infinite		
Loop on		
count		
	PRBS.13PRBS.15PRBS.21PRBS.23PRBS.31PRBS.31Per- transmitterPer- receiverAutomatic seed 	PRBS.13PRBS.15PRBS.21PRBS.23PRBS.23PRBS.31PRBS.31Image: Constraint of the sect o

Number of Sequencer Slots per Pattern Generator	16		This refers to the number of sequencer slots that can operate at any given time. The instrument has storage space for 16 different sequencer programs.
Maximum Loop Count per Sequencer Slot	216 - 1		
Additional Pattern Characteristics			
Pattern Switching	Wait to end		When sourcing PRBS patterns,
	of segment		this option does not exist.
	Immediate		
Raw Data Capture Length	8192	bits	Memory allocation is customizable. Contact factory.

TABLE 7 INSTRUCTION SEQUENCE CACHE

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Simple Instruction Cache			
Instruction Learn mode Instruction	Start Stop Replay		
Advanced Instruction Cache			
Local Instruction Storage	1M Instructions		
Instruction Sequence Segments	1000		

TABLE 8 DUT CONTROL CAPABILITIES

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
DUT IEEE-1149-1 (JTAG) Port (Option)			
JTAG-Port Transmit Signals	ТСК		
	TRST		
	TDI		
JTAG-Port Receive Signals	TDO		
JTAG-Port Transmit Voltage Swing (Fixed)	0 to 2.5	V	
JTAG-Port Receive Max Voltage Swing	0 to 2.5	V	
TDI Bit Memory	4k		
TDO Bit Memory	4k		
DUT SPI Port (Option)			
SPI Signals	SCLK		
	SSN		
	MISO		
Voltage Swing (Fixed)	MOSI		
_	0 to 2.5	V	

ORDERING INFORMATION

TABLE 9: ITEM NUMBERS FOR SV3C RELATED PRODUCTS

PART NUMBER	ΝΑΜΕ	KEY DIFFERENTIATORS
4504	SV3C-4 - 4 Gbps 32 channels. Includes PC	Highly parallel tester for DDR,
	SW License (Perpetual)	clock forwarded, and embedded
		clock applications up to 4 Gbps
4508	SV3C-8 - 8 Gbps 32 channels. Includes PC	Highly parallel tester for DDR,
	SW License (Perpetual)	clock forwarded, and embedded
		clock applications up to 8 Gbps
4512	SV3C-12 - 12.5 Gbps 32 channels.	Highly parallel tester for DDR,
	Includes PC SW License (Perpetual)	clock forwarded, and embedded
		clock applications up to 12.5 Gbps
4514	SV3C-14 - 14.1 Gbps 32 channels.	Highly parallel tester for DDR,
	Includes PC SW License (Perpetual)	clock forwarded, and embedded
		clock applications up to 14.1 Gbps

REVISION NUMBER	HISTORY	DATE
1.0	Document release	August 1, 2014
1.1	Updated specifications tables; removed measurement throughput characteristics	August 14, 2014
1.2	Updated document template; updated specifications related to memory depth	April 13, 2017
1.3	Corrected Random Jitter Noise Floor units	May 24, 2018
1.4	Updated document template and added Table 9 item numbers	June 19, 2023

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

© Introspect Technology, 2023 Published in Canada on June 19, 2023 MK-D011E-E-23170

INTROSPECT.CA